
Ustilaginaceae fungi as biotech cell factories                                 Author copy 

1 

 

Perspectives for the application of Ustilaginaceae as biotech cell factories 

 

Nick Wierckx1, Katharina Miebach2, Nina Ihling2, Kai P. Hussnaetter3, Jochen Büchs2, 

Kerstin Schipper3*
  

 
1 Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich and 

Bioeconomy Science Center (BioSC), Wilhelm-Johnen-Str., 52425 Jülich, Germany 
2 Aachener Verfahrenstechnik – Biochemical Engineering, RWTH Aachen University, 

Forckenbeckstr. 51, 52074 Aachen, Germany and Bioeconomy Science Center (BioSC), 

Wilhelm-Johnen-Str., 52425 Jülich, Germany 
3 Institute for Microbiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 

40225 Düsseldorf, Germany and Bioeconomy Science Center (BioSC), Wilhelm-Johnen-Str., 

52425 Jülich, Germany 
 

* Corresponding author: E-mail: kerstin.schipper@uni-duesseldorf.de (KS) 

 

Author copy 

This is the author copy version of the following article: Nick Wierckx, Katharina Miebach, 

Nina Ihling, Kai P. Hussnaetter, Jochen Büchs, Kerstin Schipper; Perspectives for the 

application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; EBC20200141., 

which has been published in final form at https://doi.org/10.1042/EBC20200141. 

 

Abstract 

Basidiomycete fungi of the family Ustilaginaceae are mainly known as plant pathogens causing 

smut disease on crops and grasses. However, they are also natural producers of value-added 

substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with 

promising hydrolytic activities. These attributes recently evoked increasing interest in their 

biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized 

member of the Ustilaginaceae. After decades of research in the fields of genetics and plant 

pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry 

are available. As a consequence, U. maydis has developed into a versatile model organism not 

only for fundamental research but also for applied biotechnology. Novel genetic, synthetic 

biology, and process development approaches have been implemented to engineer yields and 

product specificity as well as for the expansion of the repertoire of produced substances. 

Furthermore, research on U. maydis also substantially promoted the interest in other members 

of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest 

developments in applied research on Ustilaginaceae towards their establishment as future 

biotech cell factories.  
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Abbreviations 

CBP  Consolidated bioprocessing 

MEL   Mannosylerythritol lipids 

MTP  Microtiter plate 

RAMOS Respiration Activity Online Monitoring System 

SHF  Separate hydrolysis and fermentation 

SSF  Simultaneous saccharification and fermentation 

STR  Stirred tank reactor 

UA   Ustilagic acid 

U. maydis Ustilago maydis 

 

 

Introduction  

Ustilaginaceae belong to the basidiomycete fungi and comprise a family of mostly plant 

pathogenic microorganisms that infect various crops and grasses, causing smut disease (1). 

Well known family members are Ustilago maydis causing corn smut (2), U. hordei eliciting 

covered smut disease in barley (3), or Sporisorium reilianum, the infectious agent of maize and 

sorghum head smut (4). Representatives without known pathogenic lifestyles are for example 

members of the anamorph genus Pseudozyma like the biocontrol agent Pseudozyma flocculosa 

(5). 

U. maydis in particular has been studied in the laboratory since decades and has thus 

developed into a valuable fungal model. Initial work focused on homologous recombination 

and DNA repair as well as on plant-pathogen interaction (6-8). Nowadays, research on U. 

maydis has largely expanded to fields like RNA and cell biology, effector biology and 

molecular plant pathology, signal transduction, protein secretion and the unfolded protein 

response, or even to the elucidation of basic principles of the primary metabolism (9-15). 

Applied research aspects progressively came into focus in the past years because U. maydis, 

like the other family members, is a natural producer of valuable small molecules like 

glycolipids, itaconic acid, triacylglycerols, polyols and organic acids (16, 17). In addition, it 

harbors the potential for production of interesting hydrolytic secretory enzymes (16, 18).  

The biology of U. maydis is very well understood. The dimorphic fungus grows as a 

saprobe in a yeast-like, haploid form that proliferates by budding. For infection of maize plants, 

compatible yeast cells mate and proliferate as dikaryotic hyphae within the plant, where tumors 

with haploid teliospores develop (19). Of note, U. maydis is not harmful to humans and infected 

corn cobs are even edible (Textbox 1).  
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Textbox 1:  

A delicious pest: While known as a plant pathogen, U. maydis 

is not harmful to humans. Rather, it has a long history of safe 

use as a delicacy (“Huitlacoche”) in Mexico and Central 

America dating back to the heydays of the Aztec empire (20) 

and Switzerland has placed Ustilago maydis on its official list 

of edible mushrooms (Verordnung über Speisepilze; 

https://www.fedlex.admin.ch/eli/oc/2002/145/de; last accessed 

02/10/2021). Plant infection strictly relies on mating of 

compatible cells and the formation of a dikaryon while the 

different haploid yeast strains are apathogenic. Moreover, the 

fungus can easily be trapped in its non-infectious form by 

disruption of the cognate signal transduction pathways (21, 22). 

These attributes qualify it as a very safe host for 

biotechnological applications.  

 

In its haploid yeast stage U. maydis is genetically tractable and simple to handle in the 

laboratory (23). The doubling time during exponential growth on glucose is about two hours 

and thus, comparable to S. cerevisiae and other established yeasts. A manually curated high-

quality genome sequence of reference strain UM521 (24) is available (19, 25) and sequences 

of several other isolates are published at the National Center for Biotechnology Information 

(NCBI) (26). Based on decades of fundamental research, a comprehensive toolset for genetic 

manipulation has been compiled. Modifications, mainly introduced by homologous 

recombination, generate genetically defined, stable U. maydis strains (23). These developments 

fostered the discovery of several biosynthetic routes for molecules of biotechnological interest 

(27-31). In addition, the recent establishment of a GC-MS/MS based metabolomics platform 

for absolute quantification of primary metabolites allows for identification of underlying 

networks for metabolic engineering (32).  

Here, we review the latest relevant methodological improvements and provide an 

overview on the most promising value-added substances produced in Ustilaginaceae. Based on 

the superb methodological foundation developed for U. maydis, the Ustilaginaceae provide 

prime candidates for industrial applications in the near future.  

 

Strain and bioprocess engineering 

In industrial biotechnology, it is important to “begin with the end in mind” by 

developing strain and bioprocess engineering in a closely integrated fashion (33). Chassis 

engineering can adapt the organism towards process demands, while bioprocess engineering 

tools can be used for scale-up to economically favorable conditions.  

 

Tools for strain engineering 

Due to its early use in fundamental research, molecular genetic tools are highly developed 

in U. maydis. A versatile vector set for genetic manipulation via homologous recombination 

developed in 2004 (34, 35) has recently been adapted to the Golden Gate cloning technology 

where Type IIS restriction enzymes are used for directional assembly (36). Besides simple gene 

Corn smut infection by U. maydis. 
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deletions, also transcriptional and translational fusions can be easily generated. Furthermore, a 

set of integrative vectors for gene insertion at specific loci has been developed, even promoting 

the generation of multiple insertions as a means to enhance gene expression (37, 38). The use 

of 2A peptides was successfully established and enables the creation of eukaryotic 

polycistronic mRNAs (39). Resistance marker recycling allows for re-use of available 

resistance cassettes, but also for the generation of marker-free strains (36, 40) with multiple 

genetic modifications (40-43). Moreover, the development of CrispR/Cas9 tools (44) enables 

precise, scar-free genomic engineering (43). The initial protocol was substantially improved 

by application of the high-fidelity endonuclease Cas9HF1 which minimizes off-target effects 

(45).  

Importantly, studies in other Ustilaginaceae largely benefit from this toolset. Methods can 

readily be transferred as demonstrated e.g. for U. bromivora (46), U. trichophora (47) or 

S. reilianum (48). Notably, modifications and verifications are needed (and not always 

successful) on the genetic level, such as the adaptation of the targeted integration sequence in 

the ip locus or the activity verification of common U. maydis promoters like Potef (21, 49). The 

interest in other Ustilaginaceae is currently further fostered by the rising availability of genome 

sequences (50, 51). By now, at least 20 full genomes including representatives of the genera 

Anthracocystis, Ustilago, Sporisorium, Pseudozyma, Kalmanozyma and Moesziomyces are 

available at NCBI (52)) and/or at EnsemblFungi (25).  

 

Cultivation modes and scales 

To continuously expand the available bioprocess engineering toolbox, cultivation 

approaches in different scales for various members of the Ustilaginaceae have been in the focus 

of intense research in the recent decade (Fig. 1). 

In general, three major cultivation categories can be defined ranging from small to large 

scale: Microtiter plates (MTP), shake flasks and bioreactors. To screen for new production 

hosts for desired natural products, MTPs have been successfully applied (17, 78). These scaled-

down cultivation methods are also very useful for investigation of oxygen-sensitive processes 

such as itaconic acid production, provided that they accurately represent larger-scale cultures 

(84). Even a brief interruption in shaking can have a significant metabolic impact (60) and 

parallel scaled-down cultures enable sacrificial sampling with minimal interruption of aeration. 

Besides conventional shake flasks as the currently most common system, different reactor types 

like jar fermenters have been used for cultivation of U. scitaminea (85) and Pseudozyma 

species (recently renamed as Moesziomyces) (76, 77, 86). With increasing fermentation 

volumes, stirred tank bioreactors (STR) have been mainly applied for cultivation. Scale-up of 

itaconic acid production to STRs has been demonstrated with U. rabenhorstiana (69), 

U. maydis (63, 71) and U. cynodontis (70). In-situ product removal of itaconic acid has been 

realized in continuous mode by addition of a membrane module for cell retention with 

U. maydis (68, 73). In a different approach, calcium-itaconate has been precipitated to enable 

product titers of over 200 g/l (43, 71). 
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Figure 1. Bioprocess engineering tools applied for Ustilaginaceae in the past decade. Cultivations in 

non-monitored batch-operated shake flasks are considered as standard procedures and are not quoted separately. 

Abbreviations: RAMOS® = Respiration Activity Monitoring System, SSF = Simultaneous saccharification and 

fermentation, CBP = Consolidated bioprocessing. (17, 

 

For application in large scale STRs, microorganisms need to be robust against 

hydromechanical stress induced by the impellers. In this regard, the yeast-like morphology of 

U. maydis is a distinctive feature, which makes it superior to well-known industrial fungi like 

Aspergillus terreus (29, 87). In addition, issues like local oxygen limitation in the centre of 

large pellets do not occur for yeast-like microbes (64). Thus, U. maydis and other 

Ustilaginaceae showing unicellular growth can easily be cultivated in stirred, submerged 

cultures (59, 74). Even high-cell density cultivations are possible, as oxygenation of the 

fermentation broth with yeast-like growing microbes can be maintained at desired levels by an 

increased stirring rate without negative impacts of hydromechanical stress. This has been 

documented for example for U. trichophora (79). For U. cynodontis, which shows yeast-like 

growth in shaken cultures, but filamentous growth in stirred tank reactors (17), suppression of 

filamentous growth has been achieved by genetic engineering of the underlying regulatory 

signalling cascade (21). Although wild type U. maydis is generally considered to grow as a 

yeast, engineered strains subjected to stress by metabolite overproduction can also switch to 

filamentous growth, which can be suppressed with similar genetic means (43, 71) This 

knowledge is very likely to be transferable also to other Ustilaginaceae to facilitate their 

handling and enable reliable use in STR applications.  

 

Online cultivation monitoring  

STRs are commonly equipped with online measurement tools for pH, temperature and 

dissolved oxygen tension. In addition, biomass determination and off-gas analytics can be 

implemented. Therefore, crucial information on the culture status is continuously accessible. 

This enables maintenance of the pH value, like for example during itaconic acid production 
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(56, 79, 88). In addition, more complex monitoring of substrate consumption and product 

formation is possible (53, 70). In contrast to STRs, small-scale experiments usually depend on 

the analysis of offline samples. Novel parallelized small-scale online monitoring technologies 

have the power to bridge fundamental research and industrial application as they significantly 

reduce the number of required experiments (89-91). Different online monitoring techniques 

have been applied to Ustilaginaceae in the past years. The BioLector® technology for example, 

which enables online measurement of biomass, pH, dissolved oxygen tension and (biogenic) 

fluorescence in microtiter plates, has been successfully exploited for characterization of 

U. maydis (60, 62) and S. scitamineum variants (80). In addition, screening experiments of 

several Ustilaginaceae species to identify promising MEL producers were reported (59). This 

technology is especially powerful when combined with intracellular fluorescent biosensors for 

the monitoring of, e.g. gene expression (62) or biochemical parameters like NADH/NAD+ ratio 

(60). The Respiration Activity Monitoring System (RAMOS®) is suited for online 

determination of the respiration activity of a culture in shake flasks (92), providing the unique 

possibility of constantly visualizing the physiologic state of a culture. The technique has for 

example been implemented to characterize U. maydis expression strains for heterologous 

proteins lacking different extracellular proteases (42). More recently, also non-invasive 

estimation of enzyme activity and residual substrate concentration based on total oxygen 

consumption was demonstrated in the framework of biomass valorisation approaches (see 

below) (66, 67). Moreover, knowledge about the oxygen transfer rate is useful for scale-up 

from shake flasks to stirred-tank reactors (93).  

U. maydis has also served as a model microorganism to implement and describe novel 

online measurement techniques (94). In MTPs, it was applied to validate an impedance 

spectrometry measurement to monitor viable biomass (61). For STRs, a low-field NMR 

measurement for non-invasive online-monitoring of substrates and products was validated 

(82). These examples underline the potential and the versatile exploitation of Ustilaginaceae 

for technological development in the field of process engineering.  

 

Hydrolytic enzymes and biomass valorisation 

Ustilaginaceae are promising microbes for biomass depolymerization because they 

encode a number of hydrolytic enzymes, most of these acting on carbohydrates (reviewed in 

(16)). Examples from U. maydis include an α-L-arabinofuranosidase acting on wheat 

arabinoxylan with a specific activity of 9 U/mg protein (95) or a CalB-type lipase with novel 

esterase activities reaching 53 U/mg on Tween 80 (96). Another esterase from Pseudozyma 

antarctica (PaE) has been described to decompose biodegradable plastics like poly(butylene 

succinate) or polycarolactone (97). Secretion of this cutinase-like enzyme is tied to MEL 

production (98) and it may therefore play a role in propagation on the plant leaf surface (99). 

Of note, most intrinsic hydrolytic enzymes of interest encoded in the genome of U. maydis are 

expressed in the pathogenic hyphal form that cannot be handled efficiently in the laboratory. 

A similar phenomenon is observed for sugar uptake transporters. U. maydis possesses a high 

affinity sucrose transporter named Srt1 that may be interesting for the conversion of this sugar 

derived from sugar cane or beet (100), but the respective gene is only expressed in planta (101). 
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Interestingly, for Pseudozyma species this limitation does not seem to occur, befitting its 

presumed non-pathogenic lifestyle (98, 102). However, for U. maydis, a recently developed 

strategy for genetic activation in the yeast stage by insertion of strong constitutive promoters 

has also overcome this problem and enabled enzyme secretion in the biotechnologically 

relevant yeast-like growth form (57, 66, 67). Further progress towards depolymerization of 

complex substrates has been achieved by genetic complementation with genes for powerful 

hydrolytic heterologous enzymes of fungal and bacterial origin (67). Co-cultivation of 

engineered Ustilaginaceae strains secreting enzymes with combinatorial activities improved 

substrate hydrolysis. These strategies resulted in successful expansion of the substrate spectrum 

including complex polysaccharides like cellobiose, xylan (57) and polygalacturonic acid (67). 

With the presence of biomass-degrading enzymes, Ustilaginaceae are promising 

candidates for valorisation approaches, covering the entire process from biomass to desirable 

products in one bioreactor (57, 66, 67). This has been demonstrated in a simultaneous 

saccharification and fermentation (SSF) (103, 104) with Pseudozyma spp. (Moesziomyces) to 

produce MEL from cellulosic materials and xylan (54, 55). Another powerful tool is the co-

cultivation of Ustilaginaceae with other microorganisms to expand the enzymatic repertoire. A 

consolidated bioprocess (103, 104), has been successfully applied with U. maydis and the 

filamentous Ascomycete Trichoderma reesei to produce itaconic acid from cellulose (53). 

 

Synthesis of small molecules 

Ustilaginaceae are natural producers of several small molecules with potential industrial 

application. Here, we provide an update on the developments focusing on the most promising 

molecules.  

 

Organic acids 

Organic acids find widespread use in polymer, food, and pharmaceutical applications 

(105, 106). Their production is a common trait in the Ustilaginaceae and almost all tested 

strains synthetize malate and succinate (17, 107). In contrast, the ability to produce itaconate 

seems to be relatively rare (17, 78, 107, 108). The main biotechnological focus has so far been 

on malate and itaconate. Their production is connected via cytoplasmic anaplerosis, which is 

paramount for high-yield production. Malate can be produced via several possible pathways, 

the most efficient of which proceeds via pyruvate carboxylase (49). Malate production is 

especially efficient on glycerol using U. trichophora. This carbon source, when combined with 

high CO2 levels generated by the presence of CaCO3 as buffering agent, enables titers above 

200 g/l with high rate and yield (58, 79). 

Transporters play a key role in driving organic acid production and product specificity 

(Fig. 2). The latter is especially important in the context of downstream processing and 

purification, where separation of two organic acids is often cost-prohibitive (109). Cytosolic 

malate can either be secreted via the putative malate exporters Ssu1 or Ssu2 (49), or it can be 

imported into the mitochondria. In the latter case, it is reduced back to oxaloacetate to enable 

synthesis of citrate and subsequently cis-aconitate. In U. maydis, this cis-aconitate is exported 

from the mitochondria by the mitochondrial tricarboxylate transporter Mtt1. This transporter 
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is the driving force for itaconate production and deletion of mtt1 reduces itaconate production 

(56, 71). In turn, overexpression of mtt1 greatly increases production (21, 56, 108). Mtt1 is an 

antiporter, preferentially exchanging cytosolic malate for mitochondrial cis-aconitate (110). 

Interestingly, the substrate specificity of the MttA antiporter from Aspergillus terreus is 

different in that 2-oxoglutarate and oxaloacetate are preferentially transported (110, 111). Mtt1 

not only balances the mitochondrial exchange of metabolites for efficient anaplerosis, it also 

plays a role in the determination of the specificity of malate and itaconate production (78). 

From a biochemical perspective, there is likely also competition between mitochondrial 

antiporters for the production of itaconate and MEL, UA, or triglycerides. Assuming that these 

lipidic products rely on fatty acids synthesized in the cytoplasm (112), a high flux towards 

cytosolic acetyl-CoA is necessary, which is likely provided via Ctp1-mediated exchange of 

malate and citrate, followed by citrate lyase-mediated formation of acetyl-CoA (Fig. 2) (113, 

114). Transporters further play a role in the determination of specificity of production of 

itaconate and its derivatives 2-hydroxyparaconate and itatartarate (115), and a similar effect 

can be expected for secretion of malate and succinate (Fig. 2). 

The large diversity of interesting metabolites secreted by U. maydis make it an 

interesting biotechnological workhorse, but also hampers efficient production of individual 

chemicals. This drawback can be circumvented by the metabolic engineering of chassis strains, 

in which the genes encoding the production pathways of competing metabolites are deleted to 

reduce by-product formation (63). This, combined with the abovementioned morphological 

engineering and overexpression of bottleneck enzymes in the metabolic pathway of the desired 

product, can enable very high yield production of a single product (43). 

 

Sugar alcohols  

Sugar alcohols are interesting non-caloric sweeteners with promising food and pharma 

applications (116, 117). Ustilaginaceae have been shown to produce mannitol and erythritol 

(107), with main research focus on the latter. Pseudozyma tsukubaensis strain KN75 reaches 

an impressive erythritol titer of 241 g/l at a rate of 2.8 g/l/h and yield of 0.61 g/g at 50 m3 scale 

(118). Erythritol production is induced by high osmotic pressure (>300 g/l sugars), and 

maintaining this pressure in a specific range without inhibiting the cells, i.e. by fed-batch 

cultivation, is key in achieving a high rate (118). Other, more distantly related Basidiomycetes 

like Moliniella are also efficient erythritol producers. Interestingly, despite the fact that 

fermentative erythritol production is an established biotechnological process, knowledge of the 

underlying biochemistry is fragmented and incomplete. An erythritol degradation pathway via 

erythrulose has been identified (119, 120). The pentose phosphate pathway is the main supplier 

of erythrose-4-phosphate (E4P) as key precursor and several studies have identified an 

erythrose reductase as rate-limiting step, but other key factors such as the E4P phosphatase or 

the erythritol transporter are thus far poorly understood (116, 117). 
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Figure 2. Interconnection between biochemical pathways for the main biotechnological products of 

Ustilaginaceae. Both mitochondrial antiporters and plasma membrane exporters (indicated in bold colors: red, 

erythritol; green, itaconate; orange, C4 dicarboxylates; blue, glycolipids) play a major role in the determination 

of product specificity. Small dotted arrows indicate input of further metabolites. PPP, pentose phosphate pathway; 

MEL, mannosylerythritol lipids; UA: ustilagic acid; 2HP, 2-hydroxyparaconate; ITT, itatartarate. 

 

Glycolipids 

Members of the Ustilaginaceae family produce two glycolipids, cellobiose lipids and 

mannosylerythritol lipids (MEL) (17, 121). These amphiphilic compounds with hydrophilic 

head groups and hydrophobic medium- to long-chain fatty acid tails reduce the surface tension. 

Thus, they represent environmentally friendly biosurfactants with potential industrial 

applications as ingredients for example in cosmetics, food, paint, washing agents or 

bioremediation. Additionally, pharmaceutical applications have been discussed (122-124). 

While production of MEL was observed in all tested Ustilaginaceae and other smuts of the 

Ustilaginales order, cellobiose lipids seem to be restricted to a few members (17).  

Glycolipid biosynthesis is coupled to nitrogen limiting conditions and well understood. 

Genes encoding the respective enzymes are organized in gene clusters. In addition, clusters 

encode putative glycolipid transporters (Fig. 2).  

MEL are composed of a mannosylerythritol sugar moiety, acylated with fatty acids of 

varying lengths. Acylation occurs in peroxisomes and is essential for production of the natural 

MEL spectrum. This also prevents competition between MEL and cellobiose lipid synthesis 

(125). Furthermore, MEL are characterized by differing degrees of acetylation (122). Studies 

of the putative MEL transporter Mmf1 are somewhat contradictory. An mmf1 deletion in P. 

tsukubaensis did not abolish MEL secretion (126), but its disruption in U. maydis does (31). 

The spectrum of produced MEL variants is very broad between the different species (124) and 
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novel tailor-made variants can be engineered by replacing biosynthetic enzymes with homologs 

from other fungi (127). Pseudozyma sp. are the yet most promising MEL producers with titers 

of up to 165 g/L (128). While some species can produce MEL using glucose as carbon source, 

others rely on hydrophobic substrates (122). Highest production titres were achieved on plant 

oils (124). 

The best characterized cellobiose lipids originate from P. flocculosa (flocculosin) and U. 

maydis (ustilagic acid; Fig. 2) (27, 28, 129, 130). In these molecules the disaccharide cellobiose 

is connected to a hydroxy palmitic acid. Eventually, the sugar moiety is further decorated with 

acetyl groups and a short‐chain β‐hydroxy fatty acid (122, 129). Product titres for cellobiose 

lipids are generally lower than for MELs and range at about 20 g/L (80, 131).  

 

Unconventional secretion of heterologous proteins  

Fungi are known for their superb abilities for protein secretion and already used for 

industrial production, mainly of homologous hydrolytic enzymes. By contrast, heterologous 

proteins are rather difficult to express. This is likely due to bottlenecks in the secretory system 

and the sensitivity of foreign proteins towards the high number of secreted proteases (132, 

133). Hence, efficient fungal platforms for heterologous protein expression are still scarce and 

alternative strategies are highly demanded.  

In U. maydis, a yet unique option for production of heterologous proteins has been 

developed by exploitation of an unconventional secretion pathway (Textbox 2). Two such 

pathways exist. Sterol carrier protein 2 (Scp2) is likely released via peroxisomes and an 

important pathogenicity factor (134).  

 

 

In an alternative pathway chitinase Cts1 shows a cell cycle dependent accumulation in 

the fragmentation zone between dividing yeast cells, from where it is most likely released (Fig. 

3) (13, 139, 140). Here, the enzyme contributes to the separation of mother and daughter cell. 

Several factors essential for unconventional Cts1 secretion have been identified, supporting a 

model of lock-type secretion (Fig. 3). The fragmentation zone is formed by the consecutive 

insertion of two septa, and the assembly of the secondary septum at the daughter cell side is 

mediated by kinase Don3 and GEF Don1 (140). Anchoring factor Jps1 is required for 

accumulation of Cts1 in the fragmentation zone (141).  

Textbox 2: 

Unconventional secretion: In eukaryotes, the majority of proteins is secreted via the endomembrane system. 

N-terminal signal sequences target proteins into the endoplasmic reticulum. By vesicular trafficking the cargo 

is transported via the Golgi apparatus to the plasma membrane, where the proteins are released by fusion of 

the membranes. Post-translational modifications like N-glycosylation take place in the endomembrane system 

and contribute to protein folding, stability and quality control (135, 136). However, a rising number of proteins 

has been described, which do not follow this classical route, but are secreted by alternative mechanisms. These 

pathways are diverse and only in rare cases well understood. Fibroblast growth factor 2 (FGF2) for example 

is secreted via self-sustained translocation at the plasma membrane of human cells (137). Acyl-binding protein 

1 (Acb1) uses specialized compartments of unconventional secretion for cell exit (138). 
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Figure 3. Exploiting lock-type unconventional 

secretion in U. maydis for heterologous protein 

production. Unconventional secretion of chitinase 

Cts1 is connected to cytokinesis. During budding, 

yeast like cells insert two consecutive septa at the 

mother and daughter cell side (dark red, primary 

septum; red, secondary septum), delimiting the so-

called fragmentation zone (FZ). Cts1 first 

accumulates at the primary septum at the mother-

daughter cell neck (1.). Upon insertion of the 

secondary septum it localizes to the fragmentation 

zone where it contributes to cell separation (2.). 

Septation factors Don1 and Don3 are essential for 

secondary septum formation and thus for assembly of 

a functional fragmentation zone. The septation 

factors and the potential anchoring factor Jps1 are 

crucial for Cts1 secretion. For heterologous protein 

production, proteins of interest (target) are fused to 

chitinase Cts1 acting as a carrier for export. N, 

nucleus. 

 

 

 

 

 

 

 

Importantly, the unconventional secretion pathway can be exploited for co-export of 

heterologous proteins using Cts1 as a carrier protein. The key advantages of hitchhiking 

unconventional secretion for protein export are i) no apparent size limitation of the exported 

product and ii) no post-translational modifications, which potentially interfere with product 

activity or application (37). Thus, even bacterial enzymes can be secreted in a functional form 

via this pathway (67, 141), while detrimental sugar moieties might be attached due to the 

presence of eukaryotic N-glycosylation sites when forcing the enzymes through the 

conventional pathway. Functionality of the system was demonstrated by several proof-of-
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principle studies using the examples of hydrolytic enzymes like β-glucuronidase, β-

galactosidase, polygalacturonases or antibody fragments (37, 41, 67, 141, 142). Recently, first 

inducible systems and an autoinduction protocol were implemented, allowing to efficiently 

separate protein production from its secretion and protecting the product against extracellular 

proteases (38). 

Currently, the titers of the unconventional secretion system are only in the mg/L range 

(142). Thus, the system is currently engineered on different levels, including genetic and 

cultivation aspects (Fig. 1), towards a competitive protein expression platform. While the idea 

of exploiting unconventional secretion for biotechnological application is not new (143), the 

lock-type pathway in U. maydis is the first verified example demonstrating the future potential 

of its industrial exploitation.  

 

Conclusions and future directions 

 

In the past decade, Ustilaginaceae have shown a rising potential for industrial 

exploitation as novel biotech cell factories. Relevant fields of application involve the synthesis 

of diverse small molecules and proteins. Deep fundamental research on U. maydis has been a 

strong driver to exploit the biodiversity of substrates and products. As shown by first successful 

consolidated bioprocessing strategies, Ustilaginaceae even possess the desired microbial skills 

for direct conversion of complex substrates into valuable products. These now need to be 

expanded and implemented in industrial scales. 

Basidiomycete fungi thus continue to establish themselves as suitable production hosts 

for an increasing number of compounds. Mannan has for example been discussed as an 

additional homologous substance with medical relevance produced in Pseudozyma species 

(144). Moreover, the advent of modern genetic tools and synthetic biology enables novel 

possibilities to also produce heterologous molecules. A recent example is the synthesis of 

sesquiterpenes by metabolically engineered U. maydis (145). We expect that in the long run, 

more native and heterologous molecules will be added to the list, including for example 

bioactive substances from higher eukaryotes, which might be hard to obtain with long 

established Ascomycete work horses like the yeast S. cerevisiae (146, 147). The exquisite 

capacity to use plant biomass components as substrates makes U. maydis a perfect system for 

consolidated bioprocessing.  

 

Summary  

• Ustilaginaceae are natural producers of a broad variety of valuable substances 

• Ustilago maydis represents a fungal model with huge potential as an industrial 

chassis 

• Detailed biochemical and genetic knowledge of biosynthetic routes enable 

efficient pathway optimization for homologous products 

• Insights into fungal biology and establishment of synthetic biological 

approaches foster production of heterologous molecules 
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• Future directions involve novel genetic strategies and co-cultivation for 

development of further consolidated bioprocessing processes 
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